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Laboratory experiments on the flow of negatively buoyant two-dimensional plumes
adjacent to a wall in a density-stratified environment are described. The flow passes
through several stages, from an inertial jet to a buoyant plume, to a neutrally
buoyant jet, and then a negatively buoyant plume when it overshoots its equilibrium
density. This fluid then ‘springs back’ and eventually occupies an intermediate range
of heights. The flow is primarily characterized by the initial value of the buoyancy
number, By = QyN3/g?, where Q is the initial volume flux per unit width, g, is the
initial buoyancy and N is the buoyancy frequency of the environment. Scaled with the
initial equilibrium depth D of the inflowing fluid, the maximum depth of penetration
increases with By, as does the width of the initial downflow, which is observed to
increase very slowly with distance downward. Observations are made of the profiles of
flow into and away from the plume as a function of height. Various properties of the
flow are compared with predictions from the ‘standard’ two-dimensional entraining
plume model, and this shows generally consistent agreement, although there are
differences in magnitudes and in details. This flow constrasts with flows down gentle
slopes into stratified environments, where two-way exchange of fluid occurs.

1. Introduction

Plumes are defined as buoyant jets where the initial jet momentum is not significant,
or has become completely dominated by the buoyancy force. Man-made examples
are the plumes from chimneys in the atmosphere, and buoyant sewage outfalls in
the ocean. Several naturally occurring phenomena can be modelled as buoyant jets
and plumes. In the atmosphere, these include flow above isolated radiatively heated
regions of the earth’s surface, above fires and volcanoes, and in the ocean, flow below
isolated regions of surface cooling (Killworth 1979), and above fissures in mid-ocean
ridges (Palmer & Ernst 1998). In many of these naturally occurring examples, the
variation of the background potential density with height (the density stratification)
is important in the overall dynamics, and the flow tends to have a two-dimensional
character rather than an axisymmetric one. Examples are flow above advancing fires,
above hot fissures in mid-ocean ridges, and below leads in ice sheets on the ocean
surface. There have been several reviews of the dynamics of jets and plumes (Chen
& Rodi 1980; List 1982a,b). In particular, List (1982a) has pointed out that the
properties of non-buoyant jets are much better understood than those of buoyant jets
and plumes. Most studies of buoyant jets have been with homogeneous environments,
and this applies to the experiments on two-dimensional buoyant jets (Rouse, Yih &
Humphreys 1952; Kotsovinos & List 1977).

The present study is based on experiments on two-dimensional buoyant jets into



316 P. G. Baines

strongly stratified environments, and is focused on the effects of stratification. It is
part of a more extensive study of downslope flows into stratified environments, of
which a preliminary report is given in Baines (1999), and results for gentle slopes
are described in Baines (2001). The buoyant jets described here are the limiting
case of flow down a ‘slope’ that is vertical, and are reported separately because of
their significance in other contexts. These experiments are therefore for one-sided
two-dimensional buoyant jets, where large-scale meandering (Kotsovinos 1977) is
suppressed, and this should be borne in mind when comparisions are made. The only
significant experiments to date on plumes into open stratified environments are those
of Morton, Taylor & Turner (1956) who used axisymmetric sources, and Bloomfield
& Kerr (1998), who used axisymmetric and line sources. Morton et al. introduced
the concept of turbulent entrainment of environmental fluid into the plume, where the
inflow Vg is proportional to the mean axial velocity in the plume, U. The ratio of these
two quantities is the entrainment constant, E, so that Vy = EU. This concept and
assumption has now become widely accepted and used, with the modification that the
entrainment ‘constant’ is seen to be a function of the relevant dimensionless variables
(List & Imberger 1973), most notably the bulk pseudo-Richardson number R, of
the jet or plume, where R, = g’b/U?. This quantity has sometimes been termed the
‘Richardson number’, though given the orientation of the flow, it is not a Richardson
number in the usual sense because here buoyancy is driving the flow rather than acting
to stabilize it. For this reason the term ‘pseudo-Richardson number’ has been used.
Here, b is the local radius of the plume and G = g’ = gAp/p, is its local buoyancy,
g is the acceleration due to gravity, p. is the mean environmental density and Ap is
the local difference between the density of fluid in the plume and in the environment.
The entrainment is therefore dependent on local conditions, varies with height in the
plume, and stems from the similarity properties of the turbulence associated with the
large-scale properties of the plume. For two-dimensional buoyant jets, the entrainment
constant varies by a factor of two from jets to plumes (Kotsovinos & List 1977), but
may be regarded as a constant for pure jets or pure plumes. This applies to both
axisymmetric and two-dimensional jets or plumes, but the values of the entrainment
constant are different for all four cases.

Morton et al. (1956) also introduced a theoretical model for axisymmetric plumes
that incorporates this entrainment assumption, and consists of equations for conserva-
tion of the fluxes of mass, momentum and buoyancy, integrated horizontally across the
plume. If we allow for the dependence of entrainment on R, this model is essentially
equivalent to a model of Priestley & Ball (1955) that uses slightly different assump-
tions and equations (List & Imberger 1973). However, the model of Morton et al.
(1956) invoking the assumption of turbulent entrainment has been preferred for sub-
sequent work and application because of its conceptual simplicity (Turner 1986). For
stratified environments, Morton et al. (1956) reported that, after rising in the plume,
the inflowing fluid was deposited over a range of heights that lay below the maximum
plume height. They identified the upper boundary of this range with the height in the
model where the velocity U had been reduced to zero by the reversal of buoyancy,
and they inferred the value of the entrainment constant for axisymmetric plumes
from these measured heights of rise.

Bloomfield & Kerr (1998) observed the properties of ‘fountains’, in which negatively
buoyant fluid is injected upward, in a stratified environment, and compared their
results with the same bulk model described by Morton et al. (1956). For both
the axisymmetric and two-dimensional versions, reasonable consistency between the
model and the observations was obtained, provided the value of the entrainment
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FIGURE 1. Schematic diagram showing the nature of the flow in a typical experiment. G denotes the
buoyancy (positive downwards) of the fluid in the downflowing plume relative to the local stratified
environment, and the horizontal arrows denote the entrained inflow. z; and z, denote the upper
and lower levels of the net outflow, and z; denotes the level of maximum downward extent of the
plume.

constant (E = 0.08) was chosen to give agreement between the theoretical predictions
and observed values of the maximum height of the fountain.

Similar properties to those described by Morton et al. (1956) and Bloomfield &
Kerr (1998) are seen in the present experiments. A representative schematic diagram
of a typical experiment is shown in figure 1. The fluid in the plume is ultimately
deposited within a distinct range of depths, and the maximum depth of penetration is
again larger than this range because of the ‘overshoot and springback’ phenomenon.
The plume penetrates well below its level of neutral buoyancy (beyond which it
may be regarded as a ‘fountain’) to a level z;, where z is the vertical coordinate
with positive direction upwards. The fluid in the plume then springs back to be
deposited within the range between heights z; and z,, where |z;| < |z;| < |z3] (here
the origin of z is taken near the source, and since the plume is negatively buoyant,
z is negative). No inflowing or entrained fluid is deposited beyond height z,, but
some environmental fluid from this range is entrained and mixed into the plume,
and is then carried into the range between z; and z, with the springback process.
These observations are described in detail in §3. The two-dimensional version of
the ‘standard’ plume model is outlined and compared with observations in §4, and
the conclusions are summarized in §5. As in Baines (2001), the principal parameter
governing the flow is seen to be the dimensionless number By, the initial value of
the parameter B, which may be termed the ‘Buoyancy number’ of the current, or
plume. In previous publications this parameter was termed M, but has been altered
here on the recommendation of the editor and referees, in the interests of optimizing
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terminology in the subject. By is defined as

N3
BO_ QO _ QO/zo’ (1'1)

T (D) g
where Qo and g; denote the initial volume flux (per unit length) and buoyancy of the
plume, respectively. N denotes the buoyancy frequency of the environmental fluid,
defined by N? = —(g/p.)dp./dz, where p,(z) is the environmental density profile. N
denotes the mean value of N over the range of depths of interest, defined by

!
880 _ & (1.2)
pD D
where D denotes the distance below the source at which the density of the environ-
mental fluid is equal to that of the initial fluid released in the plume. If N is uniform
with height, we have N = N,. A second parameter that is required to characterize the
overall flow is the initial pseudo-Richardson number

Ryo = g4d(0)’/ 03, (1.3)

where d denotes the mean thickness of the plume (averaging over eddies) and d(0) is
its initial value. If viscosity is important, the Reynolds number

N§ =

Re = %, (1.4)
is also significant, but this is not the case for most flows described here, where Re
exceeds values of several hundred. Local values of B, R, and Re may also be defined
in terms of local values of Q, G and d, as given in § 3. Of these parameters, R, and
Re are well known and their significance requires no discussion here (see e.g. List &
Imberger 1973; List 1982a,b). By has values that typically range from 0.001 to 0.1,
in both laboratory and environmental situations. B may be regarded as a measure of
the relative importance of stratification to the dynamics of the plume, and is the cube
of the ratio of two time scales: the time scale of the gravity current (Q/G?)"/3, and
that of the ambient stratification, 1/N. Alternatively, B may be interpreted as (the
cube of) the ratio of two length scales: (Q?/G)"/3, the intrinsic scale of the plume, to
L, = (QG)'3/N, the characteristic scale of height of rise from a source of buoyancy
in a stratified environment.

2. Experiments

The experiments were carried out in the tank and configuration illustrated in
figure 2. The glass-sided tank was approximately 80 cm high and rectangular in cross-
section, with internal dimensions of 299 cm in length and 38 cm in width, open at the
top and with a solid horizontal bottom. In order to increase the effective working
length of the tank (as explained below), a thin vertical Perspex partition was placed
in the tank extending from one end along approximately 80% of its length, with a
uniform gap width of 23 cm on one side and 15cm on the other. The main working
region of the tank was in the wider region of width 23 cm, and the experiment was
made two-dimensional in this portion as much as possible. A horizontal platform
45cm above the floor of the tank and extending 40 cm from one end (on the right-
hand side in figure 2) was inserted in the working region. This was terminated by a
vertical wall extending downward from the platform to the floor of the tank, and after
the tank was filled, the region beneath the platform was sealed off from the remainder
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FIGURE 2. Schematic diagram of the experimental apparatus. (a) Plan view, (b) side view.

of the tank. A fixed gate (or contraction) consisting of a horizontal cylinder (radius
2 cm) spanning the working region perpendicular to the sidewalls, and leaving a gap
of 1 cm between it and the platform below, was placed with its centre at a distance of
39cm from the end of the tank, 1 cm from the vertical wall. Before the experiments,
the tank was filled to a level above this gap, with uniformly salt-stratified fluid,
using the customary two-tank mixing procedure. During filling, the region beneath
the platform (behind the vertical wall) was connected with the main volume of the
tank by openings in the central vertical barrier and in the platform, in order to give
a uniform density stratification (particularly at the platform level) from the filling
process; these openings were then sealed after filling and before experimental runs.
A removable sealed vertical barrier was placed at approximately 1 cm away from the
gate, on the shallow side, isolating the fluid above the platform from the remainder
of the tank.

When an experiment was begun, the vertical barrier was removed and a continuous
supply of dense fluid was provided at a constant flow rate to the region above the
platform behind the gate. This geometry therefore had the effect of providing a two-
dimensional source, uniform across the working region and flowing into the deeper
region from under the gate, with an abrupt, sudden commencement. The presence of
the gate prevented the lighter fluid in the deeper part of the tank from entering the
shallow region above the platform, and helped to ensure that the source flow was
uniform across the working region.

The stationary fluid in the tank was stratified with a vertical density profile py(z),
where z is the vertical coordinate, positive upwards with the origin taken at the level
of the platform of the source fluid. In all runs, the density gradient was uniform with
depth, so that the buoyancy frequency N, given by (1.2), was effectively constant.
The density p; of the inflowing fluid was equal to the initial ambient density at a
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0o g, N D d T

B, (cm?s™) (cms™?) (s (cm) Re (cm) Ry (s)
0.00175 2.697 40.87 1.03 38.7 269.7 0.9 4.1 240
0.00216 2.697 34.40 0.982 35.68 269.7 1.2 8.2 240
0.00302 2.697 18.91 0.737 34.82 269.7 1.5 8.8 240
0.00446 4.091 17.47 0.693 36.38 409.1 1.5 3.5 165
0.00458 10.368 30.84 0.749 55 1036.8 2.9 7.0 90
0.00636 4.091 791 0.460 37.39 4091 2.3 5.75 165
0.00687 5.486 19.56 0.783 31.94 5486 1.7 32 120
0.00925 10.368 28.41 0.896 35.36 1036.8 2 2.1 90
0.0218 6.88 12.59 0.793 19.93 688 2 2.1 90
0.0258 8.275 10.02 0.679 21.75 827.5 90
0.0633 13.854 11.66 0.853 16.02 1385.4 3 1.6 45
0.0852 13.854 6.62 0.646 15.86 13854 3 0.93 45
0.0877 13.854 5.36 0.566 16.7 1385.4 3 0.75 45
0.0986 13.854 4.59 0.531 16.27 13854 3 0.65 45

TaBLE 1. Parameter values for the 14 runs analysed in this paper. T denotes the length of time of
inflow, and Ry is here given by equation (1.3), using the observed values of d for d(0).

level D below the level of the source, so that p; = po(—D). For most runs, the dense
inflow descended directly adjacent to the vertical wall under the influence of gravity,
as a turbulent negatively buoyant jet. This behaviour was assisted by inserting a
short vertical barrier (see figure 2) at a distance of 3 cm from the wall, that extended
1cm below the level of the platform. For low flow rates, this barrier had no effect
and was not required. In runs with large flow rates without the barrier, the dense
inflow entered the tank more horizontally and remained separated from the wall for a
substantial time; runs with this behaviour had different character and were excluded
from analysis. Adding the short barrier effectively prevented this initial separation,
and gave an attached buoyant jet down the wall for all flow rates used.

The procedure for a given experimental run was as follows. The tank was filled with
uniformly salt-stratified fluid, and, when the fluid was at rest, the density profile was
accurately measured by a traversing conductivity probe, which was calibrated at the
top and bottom by samples measured in an Anton Paar densitometer. The inflow was
then begun, with a constant flow rate for a given period of time that ranged between
45s and 4 min, after which it was abruptly terminated by reinserting the removable
barrier next to the gate. After sufficient time for the gravity waves and other motions
in the tank to die away (typically 30 min), the density profile was again measured
with the conductivity probe. This probe design has been used in many experiments
at Aspendale (and elsewhere) for the past 25 years. The probe consists of a glass
tube, which is lowered into the fluid at a constant rate. Fluid entering the tip of this
glass tube is siphoned past two internal electrodes, where measured current records
the conductivity. Up to four such profiles were taken before and after each run to
ensure repeatability, and to confirm that the fluid was in fact stationary. Fourteen
runs that met all these conditions were used for analysis. These had a variety of inflow
rates, inflow densities and initial density gradients, and the details of these are given
in table 1. The inflowing fluid was dyed with fluorescein, and illuminated in a thin
central vertical section by a scanned beam from an Argon ion laser, which gave a
clear picture of a two-dimensional cross-section of the motion. Each run (or most of
it) was recorded on videotape for subsequent inspection and analysis. Representative
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FIGURE 3. Photographs showing examples of three experiments, illuminated by a thin scanning laser
beam, giving an instantaneous cross-section of the flow. The inflow is dyed with fluorescein and
shows as light in colour. (a) By = 0.0018; (b) By = 0.0423; (¢) By = 0.0139. The vertical wall is on
the right-hand side. A short vertical barrier 3 cm left of the wall (indicated in figure 2b) obscures
the top of the plume in (b) and (c¢), and causes the variations in illumination in the plume.

photographs of the instantaneous flow for three different runs are shown in figure 3.
The volume of the tank that lies behind the central barrier has the effect of increasing
the effective length of the working region, as the initial and final profiles are the same
as would be obtained if the working region were extended by a length appropriate
to this volume. This permits a longer running time, minimizes the effect of start-up
and shut-down, and permits the assumption that the conditions of the experiment are
effectively constant throughout the run, although some allowance may be required
for the small increase in overall depth.

The procedure of measuring the initial and final density profiles enables us to
determine the amount of fluid that is deposited at each level of the tank, as described in
Baines (1999, 2001). Figure 4 shows initial and final density profiles for a representative
run. These profiles show how the level of each particular density value has moved
vertically (generally upwards) as a result of the inflow and associated mixing.

3. Observations

The parameters that are fixed for each experimental run are: the volume flux Q,
of inflow per unit width of the tank, the density of the inflow p;, the difference Apg
in density between p; and the ambient density po(0) at the level of the inflow, the
ambient buoyancy frequency N, and the distance D below the level of the inflow at
which the density of the inflow is equal to the ambient density (so that p; = po(—D)).
To these we may add the kinematic molecular viscosity v, but our primary scaling is
concerned with the previous parameters. The values of these parameters for the 14
runs are given in table 1. From these, we may define the dimensionless parameters By,
R, and Re, as defined by equations (1.1), (1.3) and (1.4). By = 0 for a homogeneous
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FIGURE 4. An example of initial and final environmental density profiles for a typical experiment
(By = 0.00925). The difference between these profiles is used to infer the inflow and outflow caused
by the plume.

environment, and its value increases with the stratification, although By < 1 for
realistic flows. Note that the form of definition of By involving N enables it to have
a local value using the local values of Q(z) and g'(z), so that

B(z) = Q(z)N*/g/(2). (3.1)

At the start of the inflow, the descending motion (visualized by fluorescein) has the
form of a descending two-dimensional starting-plume structure (Tsang 1970; Turner
1973, p. 194), showing a rapidly descending initial downflow region, with a return-
flow region outside it. After a few seconds, this head of the starting plume reaches
its maximum extent, and subsequently the flow attains an approximately steady state,
with turbulent fluctuations, that persists for the duration of the run (see figure 3). The
downflow adjacent to the wall is initially laminar but quickly becomes turbulent, as
seen in figure 3. In all observed runs, the width of this region increases very slightly
with downward distance, and for practical purposes is approximately constant above
the level z;. This flow is steady in the mean, in that it is not disturbed by large
meanders or eddies, except near the bottom where the downward motion ceases;
here, there are fluctuations in the mean position of the maximum extent of this
downflow. Mixing occurs in vigorous eddies owing to shear at the boundary of the
downflow. Further away from the wall, there is upward motion in the lower regions,
and this fluid rises toward a range of equilibrium levels indicated by the region of the
dyed layer in the tank. The mean width d of the region of the downflow adjacent to
the wall is an observable parameter in the experiments. [ts measurement is somewhat
subjective, and has been based on visual observations of the width of the dyed
layer, which is largely identified (approximately) with the region of mean downward
motion. Some allowance for error must therefore be made of the order of +10%,
but the repeatability of measurements indicates that the real error is less than this.
Repeated observations and measurements give consistent results, and consequently
we have confidence that this parameter and its value are meaningful. These enable
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the definition of the pseudo-Richardson number
R,=g'd/Q?% (32)

which is a function of z, with the starting value R, equation (1.3), where Q,d and g’
take their initial values. Values of d and R,y are also given in table 1. Observations
of R, taken above the level of z; show that it decreases monotonically to small
values as z decreases from O toward z;, owing to increasing Q and decreasing g'. This
behaviour contrasts with that of buoyant jets in homogeneous environments, in which
R, increases monotonically as the flow evolves into a plume (Kotsovinos & List 1977).

Observations and simple dynamical considerations show that the downflowing fluid
adjacent to the vertical wall passes through a number of recognizable stages along
its path. Initially, it has the character of an inertial jet, governed by the initial mass
and momentum flux. As the buoyancy force takes effect, however, it quickly evolves
toward the character of a turbulent plume, governed by the mass flux and buoyancy,
where the initial conditions of the inflow have progressively less importance. In these
experiments, the distance (Q3/g()!/ is of order 1cm, so that this change occurs
within a distance of several cm. Further down, as the ambient density progressively
increases, the buoyancy force progressively decreases, and the plume tends to revert to
the dynamical status of a jet in a neutral environment. The accumulated momentum
in this downflow carries it on further, into the region where the buoyancy forces are
upward instead of downward, and progressively causes the flow to decelerate to zero
velocity. In this bottom region, the slowly moving fluid is deflected away from the
wall, rises in a broad stream and spreads out over a range of heights between two
levels denoted z; (upper) and z, (lower). These various different flow regimes are
depicted in figure 1. The phenomena of ‘overshoot’ and ‘springback’ at the bottom
of the flow are well-known properties of plumes in stratified environments, having
been described by Morton et al. (1956) for axisymmetric plumes, and by Bloomfield
& Kerr (1998) for fountains.

It is well known that mean velocity and density profiles in two-dimensional jets
and plumes are approximately Gaussian, and in homogeneous environments each
expands at a constant rate with downstream distance (Kotsovinos & List 1977; Chen
& Rodi 1980; List 1982b), with spreading angles of 5°-6° based on velocity. This
is consistent with dynamical similarity and an expansion in the scales of motion
with downstream distance. Turbulent entrainment produces an inflow into the jet
or plume, with increases its transport. The increase in width of the corresponding
flows in stratified environments is comparable, but of generally smaller magnitude, as
described above.

The analysis procedure used here is described in Baines (1999, 2001) and consists of
taking the initial and final density profiles and differencing them to obtain the effective
deposition of the inflowing fluid and its effect of the environment. The change in
vertical elevation of each density surface, as a result of the inflow, gives a continuous
representation of the flux of fluid that has penetrated to below that surface. Scaling
this flux with Q, gives the function Q(p), and an example is shown in figure 5(a).
From Q(p) we may calculate the net downward flow at a fixed height z from

ps(z)

Q) =0 | ) Op)dp/(ps(z) = pi(2)), (3.3)

(z

~ 300(0(pi(2)) + Q(ps(2))), (3.4)
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FIGURE 5. Representative examples of the functions 0(p), Q(Z ) and I7(Z ), for the run with
By = 0.00925. The first (Q(p)) shows the downslope volume flux as a function of density, averaged
over the whole downflow, and Q(Z) and I7(Z) show the corresponding mean downslope volume
flux in the current and outflow velocity, respectively, as functions of scaled depth Z = z/D. Positive

values of I7(Z) denote flow toward the plume.

where p;(z) and p(z) denote the initial and final density values at height z. Expressing
this in terms of Z = z/D, we have

0(Z)=0()/Q, Z =2z/D. (3:5)

Q(Z ) is therefore an appropriately stretched version of Q(p). The mean outflow
velocity v(z) from the downflow is then given by
do(z)

dz °

v(z) = — (3.6)

and in dimensionless form by

d0(2)
dz -

Examples of O(Z) and V(Z) are shown in figures 5(b) and 5(c). Most results here-
inafter are described in terms of the dimensionless coordinate Z, or its distance
equivalent, S = —Z.

The information contained in Q(Z ) and V(Z ) describes the sum total of all mixing
events inside and outside the plume, at each density level. In particular, it captures
the sum of the effects of the downflowing plume, and its rising extension further
away from the wall. Figure 6 shows representative Q curves for a range of values of
By. These show that in most experiments the net downward transport increases to
an initial maximum, then decreases to zero and becomes negative (upward net flux),
before decreasing to zero beyond depths to which the downflow has not penetrated.
More revealing, perhaps, are the ¥ curves, which are reproduced individually for each
run in figure 7. These show the two separate regions of net inflow into the downflow,
separated by a central region of strong outflow. From these curves we may identify
three significant heights for each, denoted Z;, Z, and Z3, as follows. Z; denotes the
uppermost or first level (below the origin) where V(Z ) = 0; this coincides with the
maximum in Q Z, denotes the lower or second level where V(Z) 0, and Z3 marks
the maximum penetration depth, as identified by the 0 and V curves. Hence, the
upper region of inflow lies above Z;, the region of outflow lies between Z, and Z;,

V(Z)=v(z)D/Qy = — (3.7)
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FIGURE 6. The downward volume flux in the plume Q(Z) as a function of depth Z for a number of
representative runs. Numbers attached to curves denote values of By.

and the lower region of inflow lies between Z3; and Z,. The observed variations of
these quantities with By are shown in figure 8(a). We note that Z; is approximately
uniform with increasing By (albeit with a slight decrease), but that Z, and Z3 show
a significant decrease (increase in magnitude) or descent, to below the initial level of
Z = —1.0. The levels Z; and Z, correspond with the upper and lower boundaries
of the dyed layer in the tank, as observed at the end of the run, and thereby mark
the region of the net outflow. The fact that some values of Z, are below the level of
the inflow density (for My ~ 0.1) is a measure of the degree of entrainment into the
plume in the overshoot region below this level. The values of Q at Z = Z; and Z,; are
shown in figure 8(b), and these denote the maximum and minimum observed values
of Q. The maximum shows a generally decreasing trend with increasing By, which
implies reduced entrainment into the downflow in the region above Z;. Q(Z,), on the
other hand, has an approximately constant value of about —0.4. This represents the
magnitude of the flux of the fluid that is entrained into the plume in the overshoot
region, and carried up into the outflow region above Z,; this is uniform with By, and
about 40% of the magnitude of the initial inflow.

The V curves show some interesting detailed structure. At small By (e.g. 0.00175)
the upper inflow region shows two maxima in the inflow velocity, with the lower
being the larger in amplitude and net inflow transport. As By increases, both peaks
and the net entrainment decrease in amplitude, but the lower peak decreases more
rapidly so that for values of By near 0.01, the upper peak is dominant. For larger
By values, the two peaks are barely distinguishable, and there is effectively a single
central peak. For the outflow region between Z, and Z;, for small B, there is initially
a large central peak, which decreases as By increases. A small upper second peak
then appears, and persists for larger By. A third subsidiary peak in outflow begins to
appear below the main one at By = 0.00925, and then generally becomes progressively
more important as By increases further. Possible reasons for these variations in the
outflow are discussed in succeeding sections. Below Z,, there is the inflow region
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associated with entrainment in the overshoot. For small By, this has a clear single
peak, which decreases and broadens (vertically) as By increases, although the net
entrainment remains approximately constant as noted above.

Finally, as noted above, the mean thickness of the downflowing stream is observed
to increase very slowly with downslope distance, for each experiment. This is partly
because the lower part of the plume (below z;) is obscured by the dyed fluid of the
outflow resulting from springback. In any case, the value of d observed immediately
above z; may be regarded as an observed mean value for the plume (in this region at
least), and as shown in figure 9, has a dependence on By that can be reasonably well
fitted with the power law relationship

g = 0.62BJ*, (3.8)

The exponent here is very close to 0.5, and d/D ~ BY® implies that
d ~ (Qo/N)"". (3.9)

This suggests that d is affected by the external stratification. This may be so in these
experiments, but the result may also be coincidental; N here only varies by a factor
of two, and (3.9) cannot apply in the limit as N becomes small.

4. Comparison with predictions from conventional plume models

Bulk models of plumes, both plane and axisymmetric, in homogeneous environ-
ments have consisted of equations for the fluxes of mass Q, of momentum M and
of buoyancy F, integrated across the plume. From these, we may define the mean
velocity U and the mean plume width d by

0=Ud, M=U%4. (4.1)
The buoyancy flux is then given by
F = QG, (4.2)

where G is the mean buoyancy of the plume, defined by G = g’ = gAp/po. The
principal physical factors involved are the buoyancy force and turbulent entrainment
of environmental fluid into the plume. This involves two coefficients (E and P,) that
are assumed to be dependent on dimensionless numbers, and, for two-dimensional
buoyant jets, the controlling equations take the form (e.g. List 1982b)

99 _ ru—kosd (4.3)
ds
)
dM _ d@7/d) _ P,Gd — CpU? = P,Gd — CpQ?/d?, (4.4)
ds ds
dF
- = 4.
=0 (4.5)

FIGURE 7. Profiles of the outflow function V(Z ), obtained as the derivative of the curves in figure 6.
The curves are characterized by their By values, given in the table. Negative values imply flow away
from the wall.
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FIGURE 8. (a) The observed heights Z;, Z, and Z;, as functions of By, obtained from the curves of
figure 7. Z; and Z, denote the upper and lower boundaries of the main outflow (where I7(Z) =0),
and Z; denotes the distance of maximum penetration, where again I7(Z ) = 0. (b) Observed values
of Q(Zl) and Q(Zz) as functions of By, giving a measure of the fluid entrained into the plume above
Z, and below Z,. The dashed curve shows the value of Q at the observed values Z;, obtained from
the model of §4.

where s (= —z) is the coordinate in the direction of the initial motion, P is a constant
shape factor, and E and P, are functions of the local pseudo-Richardson number, as
given by (3.2). The frictional drag of the vertical wall (where Cp, is the drag coefficient)
on the flow has been included here for completeness, but is generally small and is often
neglected. These equations are based on a careful dimensional analysis of the various
terms involved (List & Imberger 1973), and also assume that the mean transports
within the plume are dominated by the mean motion rather than the turbulent fluxes.
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FIGURE 9. The observed mean thickness of the plume, measured shortly above the level Z = Z;.
These points have been fitted with the power law relationship d/D = 0.62B3*® (shown dashed). The
solid curve denotes the value of d/D at Z = —0.2, obtained from the model of §4 with d(0) = 1.

Kotsovinos & List (1977) suggested that the latter may be significant, but this is now
not generally accepted (Chen & Rodi 1980). These equations make no assumptions
about the across-plume profiles of velocity and buoyancy, and are independent of
them. The interpretations of U and d in terms of real dimensions do depend on these
profiles, but only by constant factors. The observed mean profiles in homogeneous
environments are approximately Gaussian.

With a stratified environment, most authors have followed Morton et al. (1956),
and used the same equations, with the last replaced by

dF

_ _ A2
45 N-Q, (4.6)

which incorporates the effect of changing buoyancy due to the varying density of
the background environment. Forms for P, and E for two-dimensional isolated
free buoyant jets in homogeneous environments were obtained by Kotsovinos &
List (1977), and re-summarized by List (1982b). With the above definitions and for
equations (4.4)—(4.6), these forms are

P, =046, E=0.146(1+R,/R,) (0<R,<R,)
—0.292 (R, > Ryp), (4.7)

where the pseudo-Richardson number R, = 0 for a non-buoyant jet, and R, ap-
proaches the constant value R,, = 0.63 as the flow approaches the state of a pure
plume. For ‘wall jets’ such as those described here, where the flow is adjacent to a
vertical barrier, the entrainment process is one-sided, so that the net entrainment is
effectively halved. The mean profile of density in the wall jet is approximately a one-
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sided half that of the symmetric free jet, so that for buoyant wall jets in homogeneous
environments, for equations (4.4)—-(4.6), P, is unchanged, but E is half that above, and
varies from 0.073 to 0.146. In the present experiments, the flow may begin as a jet,
but then becomes a plume, and then a neutrally buoyant jet, and then a negatively
buoyant plume, or fountain. Bloomfield & Kerr (1998) assumed that the entrainment
coefficient E was constant in the fountain stage, and found that a value of 0.08
(i.e. 0.16 for two-sided entrainment) gave a reasonable fit to experiments with plane
fountains. Accordingly, it is here assumed that E is constant in this region, taking the
(similar) value 0.073 —the same value as for plumes at zero values of R,—so that E
has the form

E = 0073 (R, < 0)
=0.073(1 + 1.59R,) (0 <R, < 0.63)
=0.14 (R, > 0.63). (4.8)

E has been evaluated experimentally from (4.3) for the range Z; < Z <0, and
although there is considerable scatter, the form of the mean of the observed values
shows a monotonic increasing trend with R, broadly consistent with (4.8), although
the magnitudes are slightly larger. If we makes the assumption that E is effectively
constant, which is equivalent to the model of Morton et al. (1956), these equations
may be solved by quadrature for given initial conditions, but this is not done here.
For present purposes it is convenient to take d, G and Q as the dependent variables,
and to non-dimensionalize them in the form
s z ~ d A G A 0
S_D_ ‘= D’ d_do’ G_Go’ Q_Qo’
where Gy = G(0), Qp = Q(0), are the initial values of G and Q, respectively, and
= (03/Go)'/3. The hypothesized equations for d, G and O are then

(4.9)

dd
05 = 32 —5(2E +Cp — P1R,)), (4.10)
dG NGS? 1 .G
. ——E—, 4.11
ds Ng  BPd (*.11)
o 1 0
I = Bé/3E = (4.12)

where N3 = Gy/D, and N(S) denotes variation in the buoyancy frequency with S. For
the case of uniform N, as in these experiments, N(S) = Ny. The pseudo-Richardson
number,
73 A3
R, = Gd- = %, (4.13)
Q@
with this scaling.

Apart from E and Cp, two dimensionless parameters are contained in this system,
namely By and Ry. The initial conditions for G and Q for these equations are then
G(O) =1,and Q(O) = 1, and the initial Value of d d(O) ;/ 3 1t should be noted that
d may be scaled to include the factor B0 , but this is not preferred here because this
scaling does not remove By from the equations. These equations have been solved
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Ficure 10. Examples of the solution (dA, G, Q) of the model equations, (4.10)—(4.12), for the plume
(a) By =0.001; (b) 0.01, and (c) 0.1, with d(0) = 1 = Ry. Also shown are the pseudo-Richardson
number R,, the (scaled) mean downflow velocity U, and entrained inflow velocity profile V. The

form of V is similar to that of U except near S = 0. Note that V = EU < U, but 7 > U because
of scaling.

numerically using the routine ODE45 of MATLAB, for values of By ranging from
0.001 to 0.1, and Ry ranging from 1073 to 10°. The solutions are generally insensitive
to the value of R,y unless R,y < 0.1. In the experiments, the initial value of d may be
estimated from the values of R,y given in table 1. These values are all of order unity or
larger, and hence the solutions with R,y = 1 may be taken to be representative of the
experiments. Three representative solutions for By = 0.001, 0.01 and 0.1 are shown in
figure 10. These solutions provide profiles of d,G and 0 with height, the mean velocity
U= Q/cf the entrained inflow V = dQ/dS and the pseudo-Richardson number, R,.

They also give the maximum penetration of the plume S; (where U =0) and the
values of G and Q at this end point, Gf and Qf, respectively. All of these values are
representative of solutions with R,y > 0.1, as is seen (for example) in figure 11, which
shows a three-dimensional plot of Qf as a function of both By and R,. Clearly, the
net entrainment over the distance of travel of the downflow increases substantially
as By decreases. The same equations were also solved with the constant entrainment
coefficient (as used by Morton et al. 1956; Bloomfield & Kerr 1998), with E = 0.073.
The general pattern of the computed solutions is the same as those obtained using
(4.8), because R, decreases rapidly to small values when it is initially positive (see
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FIGURE 11. The total flux Qf at the endpoint Z;, obtained from the plume model of §4. This
represents the initial inflow (unity) plus all the fluid entrained into the plume along its length. Note
that this is approximately independent of Ry if Ry > 0.1.

the curves for R, in figure 10), but there are quantitative differences. The effects of
changes to the drag coefficient are generally negligible provided that it is of the same
order of magnitude as that assumed here (0.006).

Detailed comparisons between the profiles of entrainment and the observations
are restricted to the following points by the presence of the springback of the fluid
after leaving the plume. The theoretical entrainment decreases with increasing depth,
which is consistent with the large observed inflows near the top of the plume, and
the smaller inflows in the overshoot region at the bottom, as shown in figure 7. The
turbulent plume described by the model can only be clearly seen in the experiments
above the level Z;, which from figure 8(a) has a mean position at approximately
Z = —0.3. The value of Q at the observed values of Z; is shown in figure 8(b) for
comparison with the observed values of Q(Z;). In general, the trend of the two is
consistent, but the model values are mostly smaller, indicating that the values of E
used are smaller than those applicable to the experiment. Scaled with D, the observed
plume thickness d may be compared with the theoretical thickness calculated from
the model (taking the value at Z = —0.2, which is above Z; for all runs), and this
is shown in figure 9. Again, the model gives a reasonably accurate description of d,
including its variation with By.

The level of maximum penetration of the plume Z; = —S;, may be compared with
the observed value, Z5; this is done in figure 12, which shows consistent if not perfect
agreement. For further comparison of these model results with the observations, some
more assumptions are required. The model aims to describe a plume down to its
level of maximum extent. Here, the buoyancy is now positive, and, after coming to
rest, the fluid springs back to occupy and spread over a range of depths as described
in the previous section. This springback process occurs away from the wall, and is
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FIGURE 12. Comparison between observations and model predictions. The observed central level
of the outflow (Z,,) is compared with the prediction from the model of the level (Z,,) of mean
density of this outflow, identified with the density at the bottom of the plume, and assuming no
mixing in the springback. Also, the observed maximum extent of plume fluid Z5 is compared with
the theoretical prediction Z;.

very different from the downflow in the plume. The latter has vigorous eddies and
turbulence on the scale of d and smaller, which cause the mixing and entrainment
parameterized in the model. The springback process, on the other hand, is observed
to have large length scales, and of itself, does not appear to generate many small scale
eddies and, hence, little turbulent mixing. In other words, the continuous adjustment of
a broad current of fluid moving up to its range of equilibrium levels under buoyancy
does not promote the generation of the vigorous small-scale eddies required for
mixing. One may therefore make the approximation that mixing associated with
springback is negligible, and that the latter merely distributes the mixed fluid in the
plume amongst the levels of its neutral density. Accordingly, the central level of the
main outflow, Z,,, may be equated with the ambient level of the fluid at the bottom
of the downflow, so that

Zn=—8; — Gy, (4.14)
and this may be compared with the observed central level of outflow, Z,,, where
Zy < Zou < Z1. Zou 1s approximately given by the peak of the outflow for negative
V in figure 7, but a more robust estimate is obtained by taking the median value
(since the peak may be significantly off centre) over the range where IV < 0. Z,, and
Z .y are compared in figure 12, and show good qualitative agreement, with very weak
dependence on B.

With this conceptual picture of the overall dynamics, we may now make some
inferences and speculations about the causes of the observed variations in the outflow
(negative V') described in §3 and shown in figure 7. Here, a single maximum for By
near 0.001 becomes three maxima when By approaches 0.1. There are two possible
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reasons, or mechanisms, for these peaks. The first concerns the varying depth of the
overshoot with Bj, and the second, variations in entrainment into the plume and
the potential for the recycling of fluid after springback. For the first mechanism,
for small By, the overshoot is quite small (distance ~ 0.1D), and the outflow has
a single peak. Here, the thickness of this outflow is a reflection of the variation in
density of the fluid in the plume (because little mixing is expected from the springback
process), which is expected to have an approximately Gaussian profile. However, as B
increases, the maximum depth Z; of the overshoot becomes larger, extending below
—2 as By approaches 0.1. This implies that the fluid entrained into the plume below
Z, comes from deeper in the environmental fluid, and hence becomes progressively
more dense with increasing By. Also, below Z,, observations of the flow show that
not all the fluid in the plume reaches level Z3, as some buoyant fluid tends to leave
the outer parts of the descending plume in the range Z; < Z < Z,. Together these
processes must tend to produce non-Gaussian features in the variation of density
of the total fluid entering the environment, and I suspect that they contribute to
the lowest of the peaks observed in the outflow when By > 0.05. The second likely
mechanism concerns the variation in the entrainment with By, and depth. Over the
range of depths between Z; and Z,, the model implies that this entrainment is a
maximum near Z;, decreasing downwards. Fluid rising through springback to these
levels may be re-entrained into the plume, carried downward by it, and then returned
by springback and recycled, possibly many times. The net effect of this recycling
would be to remove fluid systematically from the re-entrained levels near Z;, and to
redistribute it to other (lower) levels in the range (Z,, Z) where entrainment is weaker.
In other words, fluid near Z; is removed from the environment and redistributed by
the plume through springback to other preferred regions between Z; and Z,. This
process is clearly capable of causing secondary peaks in the net outflow. It may
well explain the minimum between the first and second peaks in V' that appears for
By > 0.003, which broadens into the reduced outflow in the upper part of the range
(Z,,7Z,) at large By.

5. Conclusions and discussion

I have described a set of laboratory experiments on two-dimensional vertical wall
plumes into a stratified environment. The principal observational findings are as
follows.

(i) When compared with flow types (jets, plumes) in a homogeneous environment,
these plumes pass through a number of different dynamical stages or local flow types,
as indicated in figure 1. First, the flow has the form of an inertial jet, which evolves into
a buoyant plume, and then into a non-buoyant jet as the relative buoyancy decreases
to zero. As the fluid descends beyond its (mean) equilibrium level, it then becomes a
negatively buoyant plume, or ‘fountain’. Throughout this path, environmental fluid is
entrained into the ‘plume’, helping to maintain its mean position next to the vertical
wall, until the buoyancy reversal causes the downward velocity to decrease to zero.
The presence of the wall prevents large-scale meanders that are found in isolated
plane buoyant jets (Kotsovinos 1977).

(i) The mean width d of the main initial downflow increased slowly with depth,
in common with the more familiar behaviour of jets and plumes in homogeneous
environments. Concomitant with this, the downflow is observed to entrain fluid from
the environment as is customary for jets and plumes.

(iii) The fluid in the plume appears to descend to near the termination point Z;
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(though not all of it reaches Z3), and then ‘springs back’ to finally occupy and outflow
in a range of heights between Z; and Z,, which depend on the mixing of the initial
plume fluid. This ‘springback’ process is an important part of the overall flow, and
has a major impact on the final disposition of the inflowing fluid. The flow has the
appearance of a heavily damped oscillator, with no further vertical fluctuations being
visible after the initial ‘springback’.

(iv) The flows can be characterized by the initial value of the buoyancy number,
By = QyN3/ g(’)z. In terms of the vertical scale D, all depths Z,, Z, and Z; increase
with By. The mean observed width d is approximately given by equation (3.8),
d/D = 0.62B,/*, which implies d ~ (Qo/N)"/2.

(v) The observations show interesting double-peaked structure in the entrained
inflow to the plume in the upper part of the flow. There is also a double-peaked
structure in the outflow when By > 0.01, which becomes more prominent as By
increases further. These features are not contained in the model, and some possible
causes are described in §4.

(vi) Observations of Q at Z; and Z, show that the entrained fluid above Z; decreases
with By, but below Z,, the total rate of entrainment of environmental fluid into the
plume, carried upward by springback, is roughly constant with By, and is equal to
40% of the initial inflow, Q.

The overall properties have been compared with the predictions of the ‘standard
model’, based on bulk equations for mass, momentum and buoyancy flux for the
downflow. This is essentially the same model as that used by Morton et al. (1956)
and Bloomfield & Kerr (1998), with the exceptions that the model includes a drag
coefficient for the sidewall, and the entrainment coefficient E contains a dependence
on pseudo-Richardson number (following List & Imberger 1973) with a slightly
different numerical value. The effect of the drag coefficient term is small, but the
variation of E introduces quantitative differences. No parameter values (such as
the entrainment coefficient) were adjusted to optimize agreement with observations.
In addition to the usual plume model assumptions, the assumption was made that
nearly all mixing was associated with the vigorous eddies caused by shear at the
boundary of the downflow, and that negligible mixing occurred in the large-scale
springback. Qualitative agreement was found between this model and the main
observables, indicating that the physics of the flow were correctly represented. The
plume width, the level of the main outflow and the depth of maximum penetration are
all reasonably well described by the model, including the variation of these quantities
with By. However, the observed entrainment is larger than that assumed here in the
model, and there are notable differences in detail, such as double peaks in the main
outflow for values of By greater than 0.01, and other differences seen in figure 12.
These indicate that the model has its limitations and should be used with care. The
assumption of negligible mixing during springback is reasonable, but has yet to be
tested. It is possible that E and P, contain some dependence on B, but this has not
been examined here.

The reason why plumes entrain at all is reasonably clear. A one-sided plume may
be compared with two fluid streams of unequal velocity that are initially separated
by a splitter plate. If this plate disappears at some point so that the two streams
make contact and start to mix, a spreading mixing layer forms between them. If
coordinates are taken with one of the streams at rest, the mixing layer has the effect
of entraining this stationary fluid into the moving stream, in the manner observed and
modelled in jets and plumes. The properties of these flows may be contrasted with
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those observed down gentle slopes (< 12°) into stratified environments, described by
Baines (2001). In the latter, a two-way exchange between the fluid in the downflow
and the environment occurs, in which some fluid is detrained from the current
and other fluid is entrained into it. The detrainment is generally larger than the
entrainment. The difference between these two flow types may be traced to the form
of growing disturbance arising from shear flow instability, and consequent turbulent
eddy production. In the vertical plume case, the profiles of density and velocity
approximately coincide, resulting in a form of Kelvin—-Helmholtz instability, primarily
due to the shear between the environment and the downflow. This produces eddies
on a range of length scales that are in locations that can mix the fluid effectively, and
this mixing region broadens with distance downward. The kinematics of flows with a
mixing region that broadens with downflow distance then dictates that environmental
fluid is effectively entrained into the downflow. For the downslope flows on gentle
slopes, however, the process is more akin to Holmboe instability, where the strongest
vorticity gradient (of negative sign) is situated above the region of strongest density
gradient (Baines 2001). Instability results from the interaction of waves on this
vorticity gradient with waves on the density interface (see for example Baines (1995,
§4.8)). The resulting eddies are strongest in the upper region, above the density
interface, and their displacement from the region of large density variations reduces
their mixing potential. Hence, in the plume case the eddies mix strongly, and the
plume is turbulent and diffusive, resulting in net entrainment, whereas on gentle
slopes the upper boundary of the dowslope current maintains its identity and sharp
interface, with reduced entrainment and net fluid loss to the environment.

The author is most grateful to David Murray for his customary careful assistance
with all aspects of the experiments. The paper has also benefited from some insightful
comments by three referees. The change in nomenclature from the parameter M to
the buoyancy number B was made after discussions with the referees and editor.
This choice was adopted in the interests of improving terminology in the subject and
maintaining consistency in notation. The term ‘pseudo-Richardson number, R,” was
introduced for the same reasons.
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